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Abstract. The problem (P) of optimizing a linear function over the efficient set of a multiple objective 
linear program has many important applications in multiple criteria decision making. Since the 
efficient set is in general a nonconvex set, problem (P) can be classified as a global optimization 
problem. Perhaps due to its inherent difficulty, it appears that no precisely-delineated implementable 
algorithm exists for solving problem (P) globally. In this paper a relaxation algorithm is presented for 
finding a globally optimal solution for problem (P). The algorithm finds an exact optimal solution to 
the problem after a finite number of iterations. A detailed discussion is included of how to implement 
the algorithm using only linear programming methods. Convergence of the algorithm is proven, and a 
sample problem is solved. 
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1. Introduction 

Assume that p 2 2 is an integer, and that cl, c2, . . . , c, E R” are row vectors. Let 
CbethepXnmatrixwhoseithrowisgivenbyci,i=1,2,...,p,andletXbea 
nonempty, compact polyhedron in R”. Then the multiple objective linear program- 
ming problem (MOLP), given by 

VMAX: Cx, subject to x E X , 

can be viewed as the problem of finding all solutions that are efficient in the sense 
of the following definition. 

DEFINITION 1.1. A point x0 is said to be an eficient solution of problem 
(MOLP) when x0 E X, and whenever Cx 2 Cx” for some x E X, then Cx = Cx’. 

An efficient solution is also called a nondominated or Pareto-optimal solution. 
ThefunctionsL(x)=(ci,x),i=1,2 ,..., p, are called the objective or criterion 
functions for problem (MOLP). Let X, denote the set of all efficient solutions of 
problem (MOLP) . 

The central problem of interest in this paper is the problem of optimizing a 
linear function over the efficient set X, of problem (MOLP). This problem, 
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denoted henceforth as problem (P), is given by 

max( d, x), subject to x E X, , 

where d E R”. Let 8 denote the optimal objective function value of problem (P). 
Let c be any element of {cl, c2, . . , cp} . An important special case of problem 

(P) is to find the value of I$ such that 

+=min(c,x), subject toxEX,. 

The latter problem, which we will denote as problem (Q), seeks the minimum 
value C$ of criterion function f(x) = ( c, x) over the efficient set X, of problem 
(MOLP). When d = - c, any optimal solution for problem (P) is also an optimal 
solution for problem (Q), and vice versa. Therefore, any algorithm for solving 
problem (P) can also be used to solve problem (Q). 

Problem (MOLP) has been extensively studied and increasingly used as a 
decision aid during the past twenty years (see for instance, books and reviews by 
Evans [ 111, Hansen [ 141, Hemming [ 151, Rosenthal [29], Steuer [30], Yu [33], and 
Zeleny [34]). It has become more and more popular as researchers and practition- 
ers have come to realize that many decision making situations involve multiple 
criteria. In most cases, these criteria are in conflict. 

Many of the approaches for analyzing problem (MOLP) involve the generation 
of points in X, [ll, 30,331. Two of these, in particular, are quite commonly used. 
The first, called the vector maximization approach, is a two-stage process. First, 
either the entire set of efficient solutions or the subset of efficient solutions which 
are also extreme points of X is mathematically generated. Second, the generated 
set of efficient solutions is presented to the decision maker. He examines this set 
and the attainable objective function values and tradeoffs that it reveals. He 
thereby chooses a most preferred efficient solution. The other common class of 
approaches which generates points in X, is the interactive approach. In this 
approach the decision maker, by interacting with a computerized routine, sear- 
ches points in the efficient set until he finds one that he most prefers. 

Problem (P) arose at least partially in response to some of the difficulties 
involved in using problem (MOLP) as a decision aid. Although not nearly as 
extensively studied as problem (MOLP), problem (P) has received increasing 
attention in recent years. It can serve several useful purposes in multiple criteria 
decision making. Philip [27], who in 1972 first proposed the problem, suggested 
that it can be useful because unlike problem (MOLP), which only allows the 
consideration of the relative importance of the different activities xi, i = 
1,2, . . . , n, problem (P) measures their absolute importance. Benson, who later 
studied properties of problem (P) and of more general versions of it [4,7], 
pointed out that by solving problem (P) rather than problem (MOLP), the 
computational burden of generating the entire efficient set is avoided. He noted 
that, in addition, such an approach does not require the decision maker to choose 
a solution from a potentially overwhelmingly-large set of efficient solutions. To 
help describe situations in which problem (P) may arise, he also presented an 
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illustrative application of the problem to a multiple objective production-employ- 
ment profit maximization problem. 

Problem (Q), although mathematically a special case of problem (P), has its 
own unique uses in multiple criteria decision making. Several of these, discussed 
in recent papers by Weistroffer [32], Dessouky, Ghiassi, and Davis [lo], and 
Isermann and Steuer [22], are based upon the fact that the optimal value 4 of 
problem (Q), together with the maximum value of (c, x) attained over X,, 
defines the range of values that the objective function (c, x) achieves over the 
efficient set. Knowledge of this range of values can serve several practical 
purposes. First, it can aid the decision maker in setting goals. Second, it can help 
the decision maker to evaluate the utility of the values of (c, x) achieved by 
individual efficient solutions (see Ghiassi et al. [13] for an application). Third, if 
the range is relatively narrow, the decision maker may decide that in order to find 
a most preferred solution, it is not necessary to rank the objective function very 
high in importance relative to other objective functions with broader ranges. 
Fourth, if the range is extremely narrow, the decision maker may decide that he 
can eliminate the objective function (c, x) entirely from problem (MOLP). 

Other possible benefits of problem (Q) involve the use of its optimal objective 
function value 4 in various algorithms for solving problem (MOLP). For instance, 
as pointed out in [lo, 22 and 281, several interactive algorithms for finding a most 
preferred solution to problem (MOLP) could benefit if the precise optimal values 
of problem (Q) for the objective functions (c, x) of problem (MOLP) were used 
rather than estimates of these values. Among such interactive algorithms are 
STEM [3], and the algorithms of Belenson and Kapur [2] and Kok and Lootsma 
v31. 

Mathematically, problem (P) can be classified as a global optimization problem 
(also called a nonconvex programming problem), since its feasible region X, is, in 
general, a nonconvex set [6, 16-19, 21, 24-261. Such problems possess local 
optima which need not be globally optimal. Furthermore, the number of these 
local optima frequently is very large. Therefore, global optimization problems are 
much more difficult to solve than convex programming problems. In fact, except 
for certain special cases, most global optimization problems of realistic sizes 
cannot yet be solved (see, for instance [20, 21, 25, 261). 

Perhaps due to its inherent difficulty, it appears that no major efforts have been 
made to precisely delineate algorithms for solving problem (P). In a small section 
of his 1972 paper, Philip [27] schematically described a cutting plane procedure 
for solving the problem. Several years later, Isermann and Steuer [22] indepen- 
dently suggested using the same approach for problem (Q). In both algorithms, 
each time a cutting plane constraint is added, it is required to search along the 
intersection of the cutting plane and the current feasible polyhedron for all 
newly-created efficient extreme points. Since neither algorithm explains how to 
mathematicaly accomplish this search, it is not clear how to implement these 
algorithms. 

In this paper a relaxation algorithm is presented for finding a globally optimal 
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solution for problem (P). The algorithm always terminates with an exact optimal 
solution to the problem after a finite number of iterations. Depending upon in 
which step of an iteration the algorithm terminates, either an extreme point 
optimal solution or a non-extreme point optimal solution for problem (P) is 
found. A detailed discussion is included of how to implement the algorithm using 
only linear programming methods. Convergence of the algorithm is also proven. 

The next section gives the relaxation algorithm and proves that it finds an 
optimal solution for problem (P) after a finite number of iterations. Section 3 
shows in detail how the algorithm can be implemented using only linear program- 
ming methods. In Section 4 a small example problem is solved to illustrate the 
relaxation algorithm and its implementation via linear programming. Concluding 
remarks are given in Section 5. In the Appendix, we prove the validity of the 
implementation given in Section 3 for one of the steps of the algorithm. 

2. The Relaxation Algorithm 

Let X,, denote the set of extreme points of the polyhedron X. Assume that X,, is 
nonempty. Then, from Theorem 4.5 in [7], problem (P) has an optimal solution 
which belongs to X,,. We will assume henceforth in the paper, for each optimal 
solution xd E X,, to the linear program 

max( d, x}, subject to x E X , 

that xd 6 X,. This assumption merely states, from the statement before it, that 
the requirement x E X, in problem (P) is essential in the sense that if the relaxed 
requirement that x belong to X were used instead, a larger optimal value could be 
achieved. 

Let R={AERP ] (e, A)sM, ALe}, where e E RP is a vector whose entries 
each equal to one, and M is a positive real number. For sufficiently large M, from 
[27], x0 belongs to X, if, and only if, there exists at least one A0 E h such that .x0 is 
an optimal solution to the “weighted sum” problem (P,) given by 

max ATCx, subject to x E X , 

with A = ho. Let us assume henceforth that M is chosen to be large enough to 
guarantee this property. Then problem (P) can be equivalently written as the 
infinitely-constrained problem (PI) given by 

O=max(d,x), 

s.t. ATCxZATC2 for alliEX, 

XEX, 

AEA, 

(1) 

where both n and A are variables. Notice that each of the infinite number of 
constraints in (1) involves the bilinear term AT&. 

The algorithm solves problem (P) by solving the equivalent problem (PI) with a 
relaxation procedure. The relaxation procedure is similar to one used by Blanken- 
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ship and Falk [9] to solve certain classes of infinitely-constrained optimization 
problems. In a general iteration k of the algorithm, a finitely-constrained relaxa- 
tion (PI,) of problem (PI) is solved. Problem (PI,) is identical to problem (PI), 
except that it substitutes the constraints 

ATCx2hTCxi, j=O,l,2 ,..., k, (4 

for (l), where x0, xi, . . , xk are certain elements of X,, fl X, obtained from 
previous iterations of the algorithm. Thus, problem (PI,) has a finite, rather than 
an infinite, number of constraints involving the bilinear term A’Cx. If an optimal 
solution is found by the algorithm to the relaxation (PI,) which lies in X,, then 
the algorithm terminates. Otherwise, a new element xk+* of X,, fl X, is found. In 
the next iteration k + 1, a “tighter” relaxation (PIktl) of problem (PI) is solved 
which is identical to the previous relaxation, except for including the additional 
“cutting” constraint 

hTCx 2 hTcxk+l 

in (2). The algorithm may be stated as follows. 

RELAXATION ALGORITHM FOR PROBLEM (P) 

Znitialization Step. Choose any point x0 E X, fl X,,. Find any vector ho E A 
such that x0 is an optimal solution to problem (Pi) with h = ho. Set k = 0 and go 
to Iteration k. 

Iteration k, k 2 0. 

Step k.2. Find an optimal solution (?+l, hk+‘) to the relaxed problem (PI,) 
given by 

max(d, x> , 
s.t. hTCx 2 ATCxi, j = 0, 1, . . . , k , 

XEX, 
AEh, 

where both x and A are variables. Let f!?,,, denote the optimal value of problem 
(PI,). 

Step k.2. If t$+, =(d,x’) for some jE{O,l,...,k}, then STOP: x’is an 
optimal solution for problem (P) for any j”E {O,l, . . . , k} such that @+i = 
(d, x’). If @,+, # (d, x’) for all j E (0, 1, . . . , k}, continue. 

Step k.3. Solve the linear programming problem (Tk) given by 

max eTCx , 

s.t. cxz- cyk+’ ) 

XEX, 

for any optimal solution x* E X. If eTCx* = eTCYk+l, then STOP: Xktl is an 
optimal solution for problem (P). If eTCx* # eTCfk’*, continue. 



88 HAROLD P. BENSON 

Step k.4. Solve the linear programming problem (P,-,+l) given by 

max( hk+*)TC~, subject to x E X 

for any optimal solution x** E X,,. Set xktl = x** and k = k + 1, and go to 
Iteration k. 

REMARK 2.1. Notice for each k 2 0 that the vector hk+’ generated by the 
algorithm lies in A, and that xk+l is an optimal solution in X,, for the linear 
program (P,-,+i). From this and the choice of x0 in the Initialization Step, it 
follows that the points x0, x1, x2, . . . generated by the algorithm are efficient 
extreme points for problem (MOLP). Thus, for each t 20, (d, x’) is a lower 
bound for the optimal value 8 of problem (P). The lower bounds (d, x’), 
t = 0, 1,2, . . . , however, need not satisfy (d, x1> 5 (d, xf+‘) for each t E 
{O,l, 2, . . .}. 

By the following result, the points X1, X2, . . . provide a nonincreasing sequence of 
upper bounds for 0. 

THEOREM 2.1. Let t E { 1,2, . . .} and let X’ and n’+’ be two points generated by 
the algorithm in Iterations t - 1 and t, respectively. Then 8 5 (d, .i?+’ ) 5 (d, 2’). 

Proof. Let y E X, be any optimal solution for problem (P). Then, since 

Y EXE, for some AY E A, (Ay)rCy 2 (hy)rCi for all 2 E X [27]. Therefore, 
(Ay)TCy~(hy)TCxj, j=o,1,2,. . .) w, where w is an arbitrary nonnegative 
integer and xi, j=O, 1,2,. . . , w, are points generated by the algorithm by the 
start of Iteration w. Since y E X and A’ E A, this implies that ( y, A ‘) is a feasible 
solution for problem (PI,) solved in Step w. 1 of the algorithm. From Step w.1, 
(d, Xw+‘) 2 (d, y) = 8 follows. By the choice of w, this implies that (d, X’) 2 0 
for each tE{1,2,. . .}. The inequality (d, XrW1) ~5 (d, 2’) follows for any t E 
{1,2, . . .} from the fact that for each such t, the feasible region of problem (PI,) 
is a subset of the feasible region of problem (PI,_,). 0 

Let t E (0, 1,2, . . .}, and let x0, x1, . . . ,xr and X’+r be points generated by the 
algorithm after Step t.1 of Iteration t has been executed. Let LB, = 
max{( d, x”) 1 w = 0, 1, . . . , t} and UB, = 0c+1. Then, from Step t.1 of the al- 
gorithm, from Theorem 2.1, and from Remark 2.1, 

LB,50ZUB,. (3) 

From (3), the algorithm may be terminated after Step t.1 of some Iteration t if 
(UB, - LB,) is sufficiently small. If this were done, then any efficient extreme 
point xW, w E (0, 1, . . , t} found by the algorithm for which LB, = (d, x”‘) could 
be considered to be an optimal or near-optimal solution for problem (P). 
However, such a premature termination may not be necessary because, as we 
shall now show, the algorithm always terminates in a finite number of iterations 
with a valid optimal solution to problem (P). 
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To prove that the algorithm is finite and valid, we must first present two 
theorems which describe two additional properties of the algorithm. The first of 
these two properties is given in the next theorem. For any subset Y of X, let YE 
denote the set of efficient solutions for the multiple objective problem obtained 
from (MOLP) by substituting Y for X in (MOLP). 

THEOREM 2.2. Let t E (0, 1,2, . . .}, and let H be the convex hull of 
{ x0, x1, . . . , xf, i’+*}. Then ,i?+l E HE. 

Proof. In this proof, for any vectors w, u E RP, let w Z- u denote that w 2 u and 
w # U. To prove the theorem, assume, to the contrary, that X’+l p HE. Then, by 
Definition 1.1.) there exists a point x E H such that Cx 2 Ci’+l. Since x E H, 
there exist nonnegative constants LYE, (pi, . . . , ‘~,+i which sum to unity such that 

f 
x = 2 cu,xx’ + cYr+lxr+l . 

j-0 

Since (Ye, (pi, . . . , at, (~,+i sum to unity and Cx 2 C?i, this equation implies that 

i Q;CX’ + **+lcit+l 2 $-@ cYjcFfl + *,+lCXt+l . 
j=O 

From Step t.1 of the algorithm, 

(i’+yCXt+l 2 (h’+l)TCXj, j = 0, 1, . . . ) t ) 

so that by nonnegativity of (Ye, (pi, . . . , (Y,, 

[,$ aj(i’+l)Tcit+l] 2 [I; a,(h~+‘)‘Cx’] . 

(4) 

(5) 

Subtracting ~l+lCX’+l from both sides of inequality (4) and taking the inner 
product of the remaining term on each side with x,+1 > 0 yields 

J$o aj(h’+‘)TCxj > ,a0 cxj( ht+l)TCif+l . 

But this contradicts inequality (5). Therefore, our assumption that X”l @ HE 
must be false, so that the theorem is proved. q 

Next, we show that the efficient extreme points xf, t = 0, 1, . . . generated by the 
algorithm are distinct form one another. 

THEOREM 2.3. Let t E (0, 1,2, . . .}. Then x’+l g {x0, x1, . . . , x’}. 
Proof. Since x ‘Cl is generated in Step t.4 of the algorithm, eTCx* # eTCiftl 

occurs in Step t.3. Therefore, from Benson [5], Xrtr @ X,. This implies that for 
each hE A, Xf+l . is a suboptimal solution for problem (PA), by [27]. Therefore, 
from Step t.4, ( hr+l)TC~f+l > ( hr+l)TCittl. From Step t.1, ( hf+l)TCX’+l 2 
(,‘+‘)‘Cxj, i = 0, 1, . . . , f. By transitivity, ( htfl)TC~r+’ > ( ,‘+l)TCxj, j = 
0, 1, . . . , t, which implies the desired result. 0 
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We are now able to show that the algorithm is finite and valid. 

THEOREM 2.4. (1) The algorithm terminates after a finite number of iterations. 
(2) The algorithm terminates only when an optimal solution for 

problem (P) has been found. 
Proof. (1). From Remark 2.1, xf E X,, fl X, for each t E (0, 1,2, . . .}. By 

Theorem 2.3, the points x’, t = 0, 1,2, . . . are distinct from one another. During 
each iteration t of the algorithm, the execution of Step t.4 thus generates an 
element of X,, II X, not previously found. The number of elements 4 in X,, fl X, 
is finite. Therefore, after at most 4 - 1 iterations, the set of points 

{ x0, Xl,. . . ) x”} used in the constraints of problem (PI,) will equal X,, fl X,. 
From Theorem 2.2, this implies that after a finite number of iterations, the point 
X -k+l derived in Step k.1 will be an efficient point of the convex hull of 
[x,, n x,] u {ik+l}. s ince X, is a subset of this convex hull [33], it is easily 
shown that this implies that .Yk+* E X,. Therefore, from [5], Xk+’ will be an 
optimal solution to problem (Tk) in Step k.3. Since this implies that the algorithm 
terminates, and Xk+’ is derived after a finite number of iterations, part (1) is 
proven. 

(2) Either (a) the algorithm terminates in some Step t.2 or (b) it terminates in 
some Step t.3, where t is a finite, nonnegative integer. 

Case 1. The algorithm terminates in Step t.2 for some finite, nonnegative 
integer t. Then @+, = (d, x’) for some j E (0, 1,2, . . . , t}. Let xj satisfy 0,+, = 
(d, xi). From Theorem 2.1 and Step t.1, 0,+, 2 8. By Remark 2.1, 8 2 (d,x’). 
The three previous statements together imply that (d, xi) = 0. From Remark 2.1, 
xi E X,. Therefore, xi is an optimal solution for problem (P). 

Case 2. The algorithm terminates in Step t.3 for some finite, nonnegative 
integer t. Then, from Step t.3, since Z’+’ E X, X’+’ is an optimal solution for the 
linear program (T,) given in this step. From [5], this implies that X’+’ E X,. From 
Theorem 2.1 and Step t.1, (d, ?+‘) = 0,+, 2 8. Additionally, since X’+i E X,, 
8 2 (d, X”‘). The latter two statements imply that 8 = (d, XC+‘) and that Xf+l is 
an optimal solution for problem (P). 0 

REMARK 2.2. Notice from Theorem 2.4(2) and Remark 2.1 that if the al- 
gorithm terminates in Step t.2 for some t 2 0, then xi is an optimal extreme point 
solution for problem (P). On the other hand, if termination occurs in Step t.3 for 
some t 2 0, then, although it+’ is an optimal solution for problem (P), it need not 
be an extreme point of X. This is because Xf+‘, for each t 20, is part of the 
optimal solution found in Step t.1 to the relaxed problem (PI,), and problem (PI,) 
does not necessarily have an optimal solution (X, h) for which X E X,,. 

REMARK 2.3. Each of the constraints 

hTCx?hTCxi, j=O,l,. . . , k 
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in the relaxed problem (PI,) in Step k.1 of the algorithm involves the bilinear 
term hTCx. This causes the feasible region of problem (PI,) to be a nonconvex 
set, so that problem (PI,) is a global optimization problem. Such problems, as 
pointed out earlier, are much more difficult to solve than convex programs. 
However considerable progress has been made in the past 25 years in developing 
practical algorithms for solving certain special classes of global optimization 
problems (see, for example, [l, 4, 6, 8, 9, 12, 16-21, 24-26, 311 and references 
therein). In the next section, a branch and bound procedure for solving problem 
(PI,) will be presented which involves solving a sequence of linear programming 
problems. 

3. Implementation Issues 

Except for the Initialization Step and the Iteration Step k.1, it is immediately 
apparent that the relaxation algorithm is implementable via linear programming 
methods. As we shall now show, the Initialization Step and the Iteration Step k.1 
can also be accomplished via linear programming. Of course, other means of 
implementing these steps, especially Iteration Step k.1, could be formulated. 
However, since efficient methods such as the simplex method and Karamarkar’s 
method exist for solving linear programs, the implementations to be shown here 
are expected to represent potentially valuable practical approaches. 

3.1. THE INITIALIZATION STEP 

The Initialization Step calls for finding an element x0 of X, n X,, and an 
associated vector ho E A such that x0 is an optimal solution to problem (PA) with 
h = ho. This is readily accomplished by choosing any ho E A (e.g. ho = e) and 
solving the linear program (PA) with A = ho for an optimal extreme point solution 
x0 [27]. Such a solution is guaranteed to exist, since X is a nonempty, compact 
polyhedron. 

3.2. THE ITERATION STEP K.l 

In order to implement the Iteration Step k.1, the relaxed global optimization 
problem (PI,) must be solved. No algorithm in the global optimization literature 
seems to exist which is specifically designed to solve problems such as problem 
(PI,) [18,21,25,26]. Fortunately, however, due to its special structure, we are 
able to offer an all-linear programming procedure for solving this problem. 
Preliminary computational research has shown that of the approaches used thus 
far for global optimization, branch and bound is most frequently the most efficient 
[S, l&20,21]. Indeed, several general prototype branch and bound algorithms for 
solving various classes of global optimization problems have been proposed 
[6,12,17,19]. Therefore, the procedure that we have developed for problem 
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(PI,) uses branch and bound. While it does not specifically follow the format of 
any of the prototype algorithms, it is motivated by one recently given by Horst 

1171. 
The branch and bound procedure for Iteration Step k.1 solves problem (PI,) 

by solving an equilvalent problem (QI,). To explain how problem (QI,) is 
derived from problem (PI,), we introduce some additional notation. In problem 
(PI,) let ui denote Cx’ for each i = 0, 1, . . . , k. For each i E {1,2, . . . , p}, let 

gj=min- (c,,x), subject to xEX, 

and 

u,=max- (cj,x), subject to xEX. 

Let V = {u E RP 1 _v s u 5 V} , where the ith components of _u and U are _ui and U,, 
respectively, i = 1,2, . . . , p. Let L={hERPI15Ah,sM-p+l, i= 

1,2, . . . , p}. Finally, let Q = {(x, u, A) E Rntzp ( x E X, u + Cx = 0, (e, A) 5 
M}. Then by adding the variables u = - Cx to problem (PI,), we obtain the 
equivalent problem (QI,) given by 

min- (d, x) , 

s.t. (u, A) + (a’, A) 50, j=O, 1,. . . , k, 

(x, u, A) E Q > 
UEV, 
AEL. 

(6) 

Notice that (x*, A*) is an optimal solution for problem (PI,) if and only if 

(X*7 u*, A*) is an optimal solution for problem (QI,), where u’ = - Cx*. 
To aid in the presentation of the procedure for solving problem (QI,), we will 

use the following definitions. 

DEFINITION 3.1. The convex envelope of a function h taken over a convex 
subset H of its domain is that function h, over H whose epigraph is the convex 
hull of the epigraph of h taken over H. 

DEFINITION 3.2. A set H = {x E R” / c 5 x 5 d}, where c, d E R”, is called an 
n-rectangle when dim H = n. 

DEFINITION 3.3. Let H G R” be an n-rectangle. Suppose that H is divided into 
two n-rectangles with equal volumes such that the midpoint of one of the longest 
edges of H is an extreme point of both new rectangles. Then H is said to be 
divided into two sub-n-rectangles by bisection. (see [16] and [31], for example). 

DEFINITION 3.4. Let T be a compact set in R”. A set M = {T,, T,, . . . , T,} of 
finitely many compact sets Ti, i = 1,2, . . . , u, of T is a partition of T when T 
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equals the union of T,, i = 1,2, . . , u, and each pair of sets Ti and Ti, i # j, 
intersect only on their boundaries relative to T. 

It can be shown that the convex envelope h, of a function h is the pointwise 
supremum of all convex functions which underestimate h over H. 

The procedure for solving problem (QI,) will repeatedly use an underestimate 
of the convex envelope g, of the indefinite quadratic function g(x,, x2) = x1x, 
taken over the two-rectangle G = {( x,,x,)~R~~_r~x,~~,~~x~IS}, where:, 
?,s, S E R. From McCormick [24], the formula for this convex envelope is given 

bY 

g,(x,, x2) = max[lyx, + yx2 - 2, 5x1 + Yx2 - Ys] . (7) 

Assume without loss of generality that V x L is a 2p-rectangle. The procedure 
for solving problem (QI,) consists of a branch and bound search. In each step w 
of the procedure, branching bisects a sub-2p-rectangle of V x L into two smaller 
sub-2p-rectangles. A new partition M, of V x L is thereby created. Problem 
(QI,) is thus separated into a finite number of problems, each of the form (QI,“,‘) 
given by 

min- (d,x), 

s.t. (u, h) + (aj, h)50, j=O,l,. . , k, 

(XT u, A) E e > 
u E V”“ 

h E L”” , 

where V”” X L”,’ . is an element of M,. The bounding process finds lower bounds 
for the optimal values of these problems. To accomplish this, certain linear 
programming relaxations of these problems are solved. It then calculates the 
minimum lower bound found for these problems. The value LB, of this minimum 
is a lower bound for -e,+ i . 

As the linear programming relaxations are solved for their optimal solutions, 
checks are performed to determine whether or not these solutions are also 
feasible solutions for problem (QI,). As feasible solutions are found, updates are 
performed, if necessary, to the minimum value that - (d, x) achieves over the set 
of feasible solutions for problem (QI,) thus far encountered in the procedure. 
This value UB is an upper bound for - ekktl. Any feasible solution for problem 
(QI,) achieving this value is called an incumbent solution. If, at the end of Step 
W, LB, = UB, then the incumbent solution is optimal in problem (QI,) and the 
procedure terminates. If not, then in Step w + 1 the branching process is again 
invoked to create a more refined partition of V x L, and the process of obtaining 
lower and upper bounds for -0,,, is repeated. 

To complete this informal description of the procedure, we must give the form 
of the linear programming relaxation of problem (QIz3’) that it uses. Let 



94 HAROLD P. BENSON 

fj = VW” x L”J and let k(v, A) = (u, A). Notice that a lower bound for the 
optimal value of problem (QI,“.‘) is given by the optimal value of the convex 
programming relaxation (CL,‘) given by 

min- (d,x) 

s.t. k,(u, A)+ (a’, h)SO, j=O,l,. . . , k, (8) 

(x, u, A) E Q > 
u E VW,’ ) 

A E L”” ) 

where k, denotes the convex envelope of k taken over H. The linear program- 
ming relaxation (P;“) of problem (QI,“,‘) used in the procedure is a linear 
programming relaxation of this convex problem. If we assume that 

L W.f = jil L,“” = & { Ai E R 1 A,“-’ 5 hi 5 h;.‘} , 

then, by reordering coordinates, H may be written as the cross product 

of the two-rectangles Vw2’ X Lw”, i = 1,2, _ _ . , p. Using this representation of H, 
equation (7), and a result of Al-Khayyal and Falk [l], the constraints (8) can be 
written 

+(a’,A)SO, j=O,l,..., k. 

For each i = 1,2, . . . , p, by using the subgradient $ (~~” + A:“, 11:” + 6:“) of 
the function fi(uj, Ai) = max(_AySruj + c:‘rAj - _v~~‘&~~‘, Aw”uj + Uw”Ai - 6w”Aw”) 
at the point 1 (cr,’ + tiw,’ , &r,* + hzYS’) to construct a linear underestimator of 
fi(ui, hi), it is a simple exercise to show that i (_hw,’ + hw’f)ui + i (cw” + Gwzf)Ai - 
4 ($“_hy“ + u:““hy”) underestimates fi(uI, Ai) throughout VW” X Lw”. Using this 
fact, the procedure constructs and solves the linear programming relaxation (P;“) 
of problem (C,W,‘) given by 

min- (d,x) 

s.t. 5 [; (_h;,’ + h:““)ui + ; ($,’ + zY;“)A,] 
i=l 
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6, u, A) E Q , (10) 

u E V”” (11) 

A E L”” . (12) 

Then for any optimal solution (xwXf, u”“~, Awz’) to linear program (P;,‘), 
-(d, xW’* ) is a lower bound for the optimal value of problem (aI;,‘>. 

We may now give a formal statement of the branch and bound procedure for 
implementing Iteration Step k. 1. 

BRANCH AND BOUND PROCEDURE FOR ITERATION STEP K.l 
Step 0. 
Step 0.1. Write the relaxed problem (PI,) in the form of problem (QI,). 

Choose a value for PCNT between 0 and 100, inclusive. Set Vol X Lo1 equal to 
V x L and set MO = {(V”’ X Lol)}. 

Step 0.2. Let (xc, uc, AC) = (x j, - Cxj, hi), where ~j is any element of argmin 
{-(d, x’) 1 j E (0, 1, . . . , k}} and x’, h’, j = 0, 1, . . . , k are iterates obtained 
from the Relaxation Algorithm for Problem (P). Let UB = -(d, xi). 

Step 0.3. Find an optimal solution (xol, uol, A”) for the linear program (PF,l). 
Set p(Vol x Lo1) = -(d, x0’) and LB, = -(d, x0’). 

Step 0.4. If (x0*, uol, Aol) is not a feasible solution for problem (QI,), go to 
Step 0.5. Otherwise, set UB = min{UB, -(d, x0’)} and if UB = -(d, x0’), set 
(XC, UC, A”) = (x0’, uol, AO’). 

Step 0.5. If IUB - LB,1 5 lUBl(PCNT/lOO), then STOP: (xc, u’, A”) is an 
optimal solution for problem (QI,), (xc, A”) is an optimal solution for problem 

(PI,), and %+, = -UB. Otherwise, set x0 = xol, u” = uol, A0 = Ao1, (V” X Lo) = 
(VO’ x Lol), and w = 1, and go to Iteration w. 

Iteration w, w 2 1. At the beginning of Iteration w, the following data is 
available: 

(i) A partition M,-, of a subset of V x L still of interest; 
(ii) For each (I@ x Lizi) E LM,-~, Oss^Zw-1, t^=l or 2, a lower bound 

/3(V”’ X L”“) for the optimal value of problem (QI:‘), calculated by 
constructing and solving a linear program (P:f) for some s and t such that 
05 s ZZ s”, t = 1 or 2. Either p(V”” x L’,?) = -(d, x’,~), where (x”‘, 
U S,t,, A’,‘) is an optimal solution for linear program (P:f), or p(V”” x 
L”,‘) = +m, indicating that both problems (P:?) and (QI:‘) are infeasible; 

(iii) Current lower and upper bounds LB,_, and UB satisfying LB,-, 5 
-Ok+, SUB; 

(iv) A feasible solution (xc, uc, A’) for problem (QI,) satisfying -(d, xc) = 
UB; 

(v) An element VW-’ X Lwml of M,-, for which LB,-, = /3(V”-’ X L”-l) = 
-(d, x”-l ), where, for some s^ and t^ satisfying 0 GZ s^ 5 w - 1, t^ = 1 or 2, 
v-’ x L”-l = V”,’ x L”.’ and (X’f, u”, A”) = (x~-*, UW-1, A,-*) is an 
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optimal solution found for some linear program (P:‘), where 0 5 s ZZ s^ and 
t = 1 or 2. 

Step w.1 (Deletion). Delete from M,-, all elements (V”,’ x L”.‘) for which 
/3(Viai X L”“) 2 UB. Let R, denote the collection of remaining members of M,-, , 
and let (VW x L”) denote (V”-l x L”-l). 

Step w.2 (Branching). Find an edge of maximum length of the 2p-rectangle 
V” X L”. Let i be the index of any sub-two-rectangle VW X Lr, i = 1,2, . . . , p of 
V” X L” which contains this edge. Subdivide VW x &w into two two-rectangles 
(Vr,i X Lw,‘), t^= 1,2, by bisection. Let VW,’ x L”“, t^= 1,2, denote the two 
sub-2p-rectangles of V” x L” thereby created. Set M, = [R,\(V” X L”)] U 
[ui”=, (vw3i x L”ai)]. 

Step w.3 (Local Bounding). For each t^ = 1,2, if the linear program (PF’?) is 
infeasible, set /3(Vwsi x L”‘,‘) = +w. For each ? = 1,2 such that the linear program 
(PFri) is feasible, solve the linear program for an optimal solution (xw,‘, vwz’, Awsi) 
and set p(V”” x L”‘,‘) = max{-( d, xW’?), /3(V” X L”)}. 

Step w.4 (Update Incumbent). For each t^ = 1,2, determine whether or not the 
constraints (6) of problem (QI,) are satisfied with (“u, A) = (u”‘,‘, A”‘,‘). Let 
TF C_ { 1,2} be the set of values of t^ for which (uWz’, A ,a’> satisfies (6). If TF is 
empty, go to Step w.5. If TF is nonempty, set UB = min{UB, UB’}, where 
UB’ = min{ - (d, xwPF) 1 ZE TF}. If U-B = 7 (d,-x”“) for some FE TF, choose any 
such FE TF and set (xc, uc, A”) = (x’“‘, nWsf, A ,“). 

Step w.5 (Global Bounding). Let LB, = min{ p(Vtsi X L”,‘) 1 (IJ’“^‘~ X V”‘?) E 
M,}. Let (VW x L”)‘be any element of M, for which p(V” X L”) = LB,,,, and let 

( x”‘, uW, A”) satisfy -(d, xW) = p(V” x L”), where, for some B and ? such that 
0 s ,$ s w, i= 1 or 2, Vi" x L",' = V" X L” and (x”,‘, viai, A”‘?) = (xw, uw, A”) is an 

optimal solution found for a linear program (PSk,‘), where 0 5 s I S, t = 1 or 2. 
Step w.6 (Termination Test). If ]UB - LB,] 2 ]UBI(PCNT/lOO), then STOP: 

(xc, uc, A”) is an optimal solution for problem(QI,), (xc, A”) is an optimal solution 
for problem (PI,), and &+, = -UB. Otherwise, set w = w + 1 and go to Iteration 
W. 

In Steps 0.5 and w.6, w 2 1, (xc, uc, A’) and (xc, A”) are actually approximately- 
optimal solutions in the sense that they are feasible solutions for which (0,+, - 
(d,x”)) Z (PCNT/lOO)](d,x”)l. Th is inequality follows from Steps 0.5 and w.6, 
w 2 1. Since PCNT is a parameter chosen from [O, 1001, the approximation can be 
as precise as desired. 

To reduce computational bookkeeping requirements, the Deletion Step w.1 is 
included in the procedure. In this step, elements of the partition M,_, are 
removed from further consideration that cannot contain vectors (u, A) E V X L 
which constitute a portion of an optimal solution to problem (QI,). 

Notice that the procedure can be executed by using linear programming 
methods. Therefore, all of the steps, including Step k.1, of the Relaxation 
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Algorithm for Problem (P) given in Section 2, can be implemented by solving 
linear programming problems. 

It must be added that the procedure for executing Step k.1 may or may not 
require a finite number of iterations. The following theorem guarantees the 
validity of the procedure in the infinite case. The interested reader is referred to 
the Appendix for a proof of this theorem. 

THEOREM 3.1. Suppose that the Branch and Bound Procedure for Iteration 
Step k.1 does not terminate after a finite number of iterations. Then 

(1) ,lii= LB, = -0k+l; 
(2) Any accumulation point of the sequence {(x”, uw, A” )} is an optimal 

solution for problem (QI,). 

4. A Small Example 

To illustrate the suggested implementation of the Relaxation Algorithm and some 
of its properties, consider a realization of problem (P) in which 

(a) X= {(xi, x2, xg) E R3 12x, + x2 5 16, 8x, + 5x, 5 66, 2x, + 3x, 527, x1 ZZ 
0,05x,17, OIzx,52}, 

(c) dT = (-l,O, 1). 

The sets X and X, are shown in Figure 1, where X, consists of the three 
two-dimensional faces of X which are shaded. Table I lists the extreme points of 
X. The maximum value of (d, x) over X equals two and is achieved at the 
extreme points A and B, neither of which belong to X,. Therefore, the 
requirement x E X, in problem (P) is essential in this example in the sense 
explained in Section 2. Let A = {(A,, AJ E R2 1 A, + A, 5 20; A,, A, 2 l}. 

Znitialization Step. We choose ho = (9.0,5.0)? Solving the linear program (PA) 
with A = ho for an optimal extreme point solution, we obtain the efficient extreme 
point x0 = (7.0,2.0,0.0). Set k = 0. 

Iteration 0. 
Step 0.1. Using the Branch and Bound Procedure given in Section 3, we find 

via a sequence of linear programs that an (exact) optimal solution to the relaxed 
problem (PI,) is given by (X’, h’) = [(O.OO, 4.385967, 2.00)T, (1.0, 9.5)T] with 
f3, = 2.0. (Notice by Theorem 2.1 and Remark 2.1 that (d, x0) = -7.0 and 
0, = 2.0 are lower and upper bounds, respectively; for the optimal value 8 of 
problem (P). Also notice that, as guaranteed by Theorem 2.2, X’ E HE, where H 
is the convex hull of {x0, X’} .) 
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Fig. 1. The sets X and X,. 

Step 0.2. Since 0, = 2.0 and (d, x”) = -7.0 # 2.0, we continue. 
Step 0.3. Solving the linear program (T,), we find that an optimal solution is 

given by x* = (4.5,6.0,0.0) ’ with eTCx* = 10.50. Since eTCil # 10.50, we con- 
tinue. (The point 2’ is not an element of X,.) 

Step 0.4. Solving the linear program (PA) with h = h’ = (1.0, 9.5)T for an 
extreme point optimal solution, we obtain the optimal solution x** = 
(4.5,6.0,0.0)=. We set x1 = (4.5,6.0,0.0)=. (Then x1 EXE II X,,. Notice that 
x1 # x0, as guaranteed by Theorem 2.3.). We then set k = 1 and proceed to 
Iteration 1. 

Table I. Extreme Points of X 

Point 

A 
B 
C 
D 

E 
F 
G 
H 

I 
J 
K 
0 

Coordinates 

(0, (42) 
(0>7,2) 
(0>7,0) 
(3,7,0) 

(4&,6,0) 
(7,&O) 
@,‘A 0) 
(8, 42) 

(7,2,2) 
(41262) 
(3,7,2) 
(O,O, 0) 
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Iteration 1. 
Step 1.1. Using the Branch and Bound Procedure given in Section 3, we find by 

solving only linear programs that the (exact) optimal solution for the relaxed 
problem (PI,) is (X2, h*) = [(O.OO, 6.2368421, 2.OO)r, (1.0, 19.0)‘], and we find 
that 0, = 2.0. (Then by Theorem 2.1 and Remark 2.1, max{ (d, x0), (d, x’)} = 
-4.50 s 8 ZZ 2.0. Notice that X2 E HE, where H is the convex hull of {x0, x1, X”}, 
as guaranteed by Theorem 2.2.) 

Step 1.2. Since 0, = 2.0 and neither (d, x0) nor (d, x’) equals 2.0, we con- 
tinue . 

Step 1.3. Solving the linear program (T,), we obtain an optimal solution 
x* = (4.1447368, 6.2368421, 0.00)’ with erCx* = 10.38158. Since eTCf2 # 
10.38158, we continue. (The point X2 does not lie in X,). 

Step 1.4. We solve the linear program (P,) with h = h* = (1.0, 19.0)T for any 
extreme point optimal solution and obtain x** = (3.0,7.0,0.0)r. We set x2 = 
(3.0,7.0,0.0)‘, and k = 2 and proceed to Iteration 2. (Notice that x2 E X, n X,, 
and, as guaranteed by Theorem 2.3, x2 # x0 and x2 #x1.) 

Iteration 2. 
Step 2.1. From the Branch and Bound Procedure given in Section 3, we find 

the (exact) optimal solution (X3, h3)= [(3.0, 7.0, 2.0)T, (1.0, 1.5)*] for the 
relaxed problem (PI,) by solving a sequence of linear programs. The optimal 
value for problem (PI,) is 0, = -1.0. (Then max{ (d, x0), (d, xl), (d, x2)} = 
-3 Z 0 5 -1.0. Notice that X3 E HE, where His the convex hull of {x0, x1, x2, X3}, 
as guaranteed by Theorem 2.2.) 

Step 2.2. Since 0, = -1.0 and none of the numbers (d, x’), j = 0, 1,2, equals 
-1.0, we continue. 

Step 2.3. Solving the linear program (T,), we obtain an optimal solution 
x* = (3.0,7.0, O.O)T with eTCx* = 10.0. Since eTCi3 = 10.0, we STOP: The point 
X3 = (3.0,7.0,2.0)’ is an optimal solution for problem (P), and 8 = -3.0 + 2.0 = 
-1.0. 

Notice that termination occurs in Step 2.3 of this example by the following 
logic. For the optimal solution (X3, h3) computed in Step 2.1 for the relaxation 
(PI,) of Problem (PI), we found in Step 2.3 that X3 E X,. Therefore, for some 
h E A, (X3, h) is a feasible solution for Problem (PI). Since (X3, h) is an optimal 
solution for the relaxation (PI,) of problem (PI) and is feasible in problem (PI), 
it must, in fact, be optimal in problem (PI) as well. This implies, by the 
equivalence of problems (PI) and (P), that n3 is an optimal solution for problem 
(0 

5. Concluding Remarks 

This paper has presented the first readily-implementable algorithm for finding a 
globally optimal solution to the problem (P) of optimizing a linear function over 
the efficient set X, of a multiple objective linear program. As a special case, the 
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algorithm can be applied to the problem (Q) of minimizing any individual 
criterion of the multiple objective linear program over X,. We have shown 
several properties of the algorithm, including the following: 

(1) It finds an exact, globally optimal solution for problem (P) after a finite 
number of iterations. 

(2) Depending upon at which step of an iteration the algorithm terminates, 
either an extreme point or a non-extreme point (globally) optimal solution 
is found. 

(3) The algorithm can be validly implemented using only linear programming 
methods. 

(4) Each successive iteration of the algorithm yields lower and upper bounds 
for the optimal value of problem (P) which are at least as good as the lower 
and upper bounds available from the previous iteration. Thus, for instance, 
the algorithm can be prematurely terminated when an incumbent solution 
is found which, although possibly suboptimal, achieves an objective func- 
tion value suitably close to the optimal value. 

Since problems (P) and (Q) h ave many important applications in multiple criteria 
decision making, these properties imply that the algorithm represents a potential- 
ly valuable, practical tool for aiding decision makers faced with multiple objective 
problems. 

6. Appendix: Proof of Theorem 3.1 

To prove Theorem 3.1, three preliminary results must first be shown. The first 
states, in the sense of Horst [17, 191, that the use of bisection in the branch and 
bound procedure for Step k.1 is exhaustive. 

LEMMA 6.1. Let {(V” x L”)}~=, b e an infinite nested sequence of partition 
elements created by the algorithm. Then, for some point (~7, h”) E R2p, 
lim,,, (V” X L”) = rlr=, (V” X L”) = ((77, h”)}. 

Proof. Let {(VU x L”)}~=, be an infinite nested sequence of partition ele- 
ments created by the algorithm. Then, from Definition 3.3 and the Branching 
Step the algorithm, {(V” x L”)}~=, is a subsequence of some sequence of 
2p-rectangles {(VW x L”)}z=, for which, for each w, (VW+’ X ,,+l) is a sub-2p- 
rectangle of (VW x L”) created by bisection. From Horst [19], lim,,, (VW X 
L”) = n;,l (v” x L”) = ((6, h”)} for some (v”, h”) E Rzp. Therefore, 
lim,,, (V” x L”) = nr=, (V” X L”) = ((6, h”)} as well. 0 

LEMMA 6.2. Let {(VU x L”)}r=, b e an infinite nested sequence of partition 
elements created by the algorithm. Let x” be any accumulation point of {x’}~=, , 
where, for each u, -(d, 2) = @(VU x L”). Then (Z, 6, A) is a feasible solution 
for problem (Ql,), where ((6, h)} r lim,,, (V” x L”). 

Proof. From Lemma 6.1 {(v”, A)} = lim,,, (V” X L”) exists. Furthermore, 
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from the Branching and Global Bounding Steps of the algorithm, for each u, since 
{(VU x L”)}~=, is an infinite sequence, p(V” X L”) = -(d, x’), where for some 
s^ and t^ satisfying 0 Z s^ s u, t^ = 1 or 2, V” X L” = V”” X L”” and (xx’, vu, A”) is an 
optimal solution found by the algorithm for the linear program (P;f) for some s 
and t satisfying 0 s s 5 8, t = 1 or 2. 

For each U, let (Pi) denote the linear program (Psk,‘) with V” and L” replacing 
V”” and L”“, respectively, in (11) and (12), and with _hr, hy , _vy and 5: replacing 
is2’, is,‘, gr” and 1.7:“, respectively, in (9). Assume for each u that 

V”=={vERp~_UU~vIUU} 

and 

where vu, U”, A”, h” E RP. 
Since lim,-, (VU x L”) = {(u”, i)}, lim.,, _u” = lim,,, V” = v” and lim,,, 1” 

= lim,,, A” = A. This implies, sinc_e c” 5 vu Z 5” and I\-” 5 A” 5 h” for each U, 
that lim,,, vu = v” and lim,,, A” = A. For each U, since (xU, vu, A”) is an optimal 
solution for problem (Pi), (xU, uU, A”) satisfies the constraints (9) and (10) of this 
problem. Setting ui = vr and hi = A:, i = 1,2, . . . , p, in the constraints (9) and 
taking limits as u approaches infinity on each side of each constraint in (9), we 
obtain, using the observations in the previous two sentences, 

(i?,i>+(a’,i)50, j=O,l,..., k. (13) 

Since X is a compact set and, from (lo), xU E X for all U, if we choose any 
accumulation point x” of {x”}~=, , then x” E X. For simplicity of notation, assume 
without loss of generality that lim,,, x* = x”. Since lim,,, (u’, A”) = (u”, A”), and, 
from (lo), lx”, vu, A”) E Q for each ,u, it is easily seen from the definition of Q 
that (x”, v”, A) E Q. Finally, since (v”, A) E (V” X L”) c (V x L) for each u, (u”, i) 
E V X L. From (13) and the previous two statements, (x”, v”, h”) is a feasible 
solution for problem (QI,). 0 

LEMMA 6.3. Let {(VU X L”)}~=, b e an infinite nested sequence of partition 
elements created by the algorithm with lim,,, (V” x L”) = nz=, (V” X L”) = 
{(v”, h”)}. Let x” be any accumulation point of {xU}~=,, where, for each u, 
-(d,x”)=P(V” x L”). Then there exists a subsequence {(VU’ X L”‘)} of {(VU X 
L”)~=, such that 

lilim j?(V”’ x L”‘) = -(d, 2) . 

Proof. Let {(V” X LU)},“=, b e an infinite nested sequence of partition ele- 
ments created by the algorithm with lim,,, (VU X L”) = rl~=, (Vu X L”) = 
((6, h”)}. From the proof of Lemma 6.2, for each u, @(VU X LU) = -(d, xU) is 
the (finite) optimal value of the linear program (Pi) defined in that proof. From 
the Local and Global Bounding Steps of the algorithm, /?(V” X L”) 5 p(V”+l X 
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L”+l) < $00 for 11 a u. From elementary calculus this implies that lim,,, @(Vu x 

L”) exists. Let 6 denote this limit. 
Now let x” be any accumulation point of {x”}:=~, ‘where, for each u, 

-(t&x”) =P(V” X L”). Assume that lim,,,, x”’ = x”. Then /? = lim,,,, p(V”’ X 

L”‘) = lim,.,, - (d, F’) = -(d, 2). c 

Proof of Theorem 3.1. Suppose that the Branch and Bound Procedure for 
Iteration Step k.1 does not terminate after a finite number of iterations. Then it 
generates a sequence of lower bounds {LB,}“,,, for which, from the Global 
Bounding Step, for each W, LB, = p(V” X L”) = --(cd, xw), where for some s^ 
and ? satisfying 0 Z s^ s w, t^ = 1 or 2, V” X L” = V”” X L”‘? and (x”‘, uw, A”) is an 
optimal solution found by the algorithm for some linear program (P;‘), where 
0 s s 5 8, t = 1 or 2. From the construction of the algorithm, LB, 5 LBWil 5 
-e/C+1 for all w, so that lim,.+, LB, exists and 

lim LB, Z --ok+, . w-+m 

Let (X; V, i) denote any accumulation point of the sequence {(CC”‘, u’“, h”‘)}~=i, 
and let {(x’““, uw”, A”‘)} denote the correspo_nding subsequence of {(x’“, u”‘, 
A”)}“,=, such that lim,. (x”“: vw’: A “‘) = (X; v”, A). Using a standard argument on 
the finiteness of the number of partition elements in each step of the algorithm 
(see, for instance, [16,17]) and Lemma 6.1, there exists a decreasing (nested) 
subsequence {(VW’ x L”‘)} c {(VW” X L”“)} f o successively-refined partition 
elements such that lim,,*, (VW’ x L”‘) = ((6, h”)}. Therefore, since x”= lim,,,, 
X w’ and, for each w’, -(d, xW’) = p(V”’ x L”“), by Lemma 6.3 there exists a 
subsequence {(V” x L’)} of {(V”” x L”‘)} such that 

lilia P(V” x L$) = -(d, 2) ) (15) 

and, by Lemma 6.2, (2, v”, h”) is a feasible solution for problem (QI,). Since 
LB, = /3(V’ X L’) for each $, (14) and (15) imply that 

lim LB, = -(d, x”) ZZ --ok+, . t?J-Bm (16) 

But since (x”, v”, h”) is a feasible solution for problem (QI,), the inequality in (16) 
implies that (x”, v”, h”) must be an optimal solution for problem (QI,), thus 
proving part (2) of the theorem. From (16) and the optimality of (x”, u”, h”) in 
problem (QI,), 

lim LB, = -(d, x”) = -ok+, . !G+m (17) 

Since lim,,, LB, = lim,,, LB,, (17) implies part (1) of the theorem. 0 
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